Возможно, вы уже знакомы с понятием спортивного программирования и знаете, что оно помогает развить навыки решения проблем и прокачать технические знания о структурах данных и алгоритмах.
Одной из важнейших составляющих спортивного программирования является изучение алгоритмов. В этой статье мы охватим большое количество алгоритмов, в том числе все алгоритмы на графах, знание которых понадобится вам для успешного решения задач из теории графов на соревнованиях по программированию. Конечно, одних теоретических знаний алгоритмов недостаточно, и вам придётся набить руку в решении практических задач на таких сайтах, как Codeforces. Настоящая же статья представит вам инструменты, необходимые для освоения важных графовых алгоритмов. Итак, приступим.
Графы, в понимании программистов, — это не те графики, которые мы изучали в школе. Это не столбиковые диаграммы или гистограммы.
Это не граф, каким его понимают программистыС точки зрения компьютерных наук и дискретной математики, графы — это абстрактный способ представления типов отношений, например дорог, соединяющих города, и других видов сетей. Графы состоят из рёбер и вершин. Вершина — это точка на графе, а ребро — это то, что соединяет две точки на графе.
Пример графаВ условиях задач из теории графов на соревнованиях по программированию обычно говорится о таких вещах, как сети и решётки.
Вот список всех терминов, относящихся к теории графов, которые вам нужно знать:
Для того, чтобы использовать алгоритмы на графах в коде, сначала нам нужно разобраться, как осуществляется представление графов в коде. Весь следующий код будет на C++, так как для спортивного программирования я предпочитаю именно этот язык за его скорость и встроенные функции, позволяющие упростить написание решений задач.
Будут показаны два способа представления графов: матрицы смежности и списки смежности. Больше вам пригодится представление графов в виде списка смежности.
Матрица смежности представляет собой граф в виде двумерной матрицы с размерами V x V, где V — количество вершин графа. Матрицы смежности лучше всего применять, когда V² примерно равно E (числу рёбер), то есть когда граф плотный. Запись a_ij обозначает, сколько рёбер соединяют вершину i и вершину j.
Ориентированный граф, ниже показана его матрица смежности Матрица 6 x 6, представляющая ориентированный граф выше.Код:
Следующий код используется для создания матрицы смежности неориентированного графа. Чтобы код создавал матрицу смежности для ориентированного графа, измените функцию add_edge
, удалив вторую строку внутри неё: matrix[v][u] = 1;
#include<bits/stdc++.h>
using namespace std;
int matrix[20][20]; //матрица смежности изначально 0
int count = 0;
//следующая функция используется для вывода
void displayMatrix(int v) {
int i, j;
for(i = 0; i < v; i++) {
for(j = 0; j < v; j++) {
cout << matrix[i][j] << " ";
}
cout << endl;
}
}
void add_edge(int u, int v){ //функция добавления ребра в матрицу
matrix[u][v] = 1;
matrix[v][u] = 1;
}
main(int argc, char* argv[]) {
int v = 6; //в графе 6 вершин
add_edge(0, 4);
add_edge(0, 3);
add_edge(1, 2);
add_edge(1, 4);
add_edge(1, 5);
add_edge(2, 3);
add_edge(2, 5);
add_edge(5, 3);
add_edge(5, 4);
displayMatrix(v);
}
Другой распространенный способ представления графов в коде — списки смежности. Суть в том, что вы создаёте списки соседей для каждой вершины, а затем помещаете все эти списки в другой список. Их лучше всего применять, когда в графе небольшое количество рёбер, то есть когда граф разрежённый. Если у вас взвешенный граф, т.е. каждое ребро графа имеет какой-то вес, то в списке будут содержаться пары для рёбер (сосед, вес).
Код:
#include<bits/stdc++.h>using namespace std;void addEdge(vector<int> adj[], int u, int v){
adj[u].push_back(v);
adj[v].push_back(u);//удаляем эту строку для ориентированных графов
}int main(){
int v = 5; //5 вершин
vector<int> adj[v];
addEdge(adj, 0, 1);
addEdge(adj, 0, 4);
addEdge(adj, 1, 2);
addEdge(adj, 1, 3);
addEdge(adj, 1, 4);
addEdge(adj, 2, 3);
addEdge(adj, 3, 4);
}
Теперь, когда мы научились представлять графы в коде, можем приступить к изучению некоторых алгоритмов на графах! Начнём с поиска в глубину (DFS) и завершим поиском в ширину (BFS). Чтобы не загромождать статью, алгоритмы поиска пути не будут здесь рассматриваться (интересующиеся могут ознакомиться с алгоритмом поиска кратчайшего пути Беллмана-Форда).
Поиск в глубину — это один из базовых алгоритмов на графах. Он применяется для поиска расстояния от одной вершины до других вершин в графе. Это алгоритм обхода.
Поиск в глубину помечает каждую вершину в графе одной из двух меток: посещённая или не посещённая. Алгоритм помечает каждую вершину как посещённую, если удаётся избежать циклов. Он работает следующим образом:
Код:
#include <bits/stdc++.h>
using namespace std;
const int N = 100000;
vector<int> adj[N];
bool visited[N];
void dfs(int s) {
if (visited[s]) return;
visited[s] = true;
for (auto u: adj[s]) {
dfs(u);
}
}
Поиск в ширину — ещё один алгоритм обхода графов. Вместе с алгоритмом поиска вглубь он составит большую часть увлекательных соревнований по программированию, по крайней мере, тех из них, что относятся к графам.
Поиск в ширину тоже помещает каждую вершину в графе в одну из двух категорий: посещённых или непосещённых. И цель у обоих алгоритмов одна и та же: помечать каждую вершину в графе как посещённую, если удаётся избежать циклов. Вот как работает алгоритм поиска в ширину:
Как видите, алгоритм поиска в ширину очень похож на алгоритм поиска в глубину. Однако вместо того, чтобы спускаться вниз по ветви графа или дерева, как это делает алгоритм поиска в глубину, алгоритм поиска в ширину проходит каждый уровень.
Визуальное отображение алгоритма поиска в ширину. Поиск начинается в вершине 1.Код:
// Быстрая реализация алгоритма поиска в ширину с использованием
// векторов и очереди
#include <bits/stdc++.h>
#define pb push_back
using namespace std;
vector<bool> v;
vector<vector<int> > g;
void edge(int a, int b){
g[a].pb(b);
// для неориентированного графа добавляем эту строку
// g[b].pb(a);
}
void bfs(int u){
queue<int> q;
q.push(u);
v[u] = true;
while (!q.empty()) {
int f = q.front();
q.pop();
// Ставим в очередь все соседние F и помечаем их как посещённые
for (auto i = g[f].begin(); i != g[f].end(); i++) {
if (!v[*i]) {
q.push(*i);
v[*i] = true;
}
}
}
}
Освоив теоретическую часть, касающуюся двух самых важных алгоритмов обхода на графах, вам остаётся только практиковаться, чтобы использовать эти алгоритмы в соревнованиях по программированию. Я бы порекомендовал для начала Codeforces: решайте задачи, помеченные тегами bfs и dfs с рейтингом до 1400. Когда почувствуете, что справляетесь с ними, увеличьте сложность.
Отработка навыков решения алгоритмических задач, особенно алгоритмов на графах, поможет вам побеждать на соревнованиях по программированию и успешно проходить технические собеседования. Вперёд — к успехам!
Перевод статьи Siddhant Dubey: A Guide to Important Graph Algorithms for Competitive Programming
Комментарии