Hands-On Deep Learning for Games: Leverage the power of neural networks and reinforcement learning to build intelligent games by Micheal Lanham


ΠšΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡ: Other

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ:
The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision, voice generation, voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development. We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments.
 Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ



ΠšΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ

    НичСго Π½Π΅ Π½Π°ΠΉΠ΄Π΅Π½ΠΎ.